# **Precipitation radar**

Martin Hagen Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany

















Martin Hagen Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany













#### **Weather Radar**

Weather radar systems are routinely used to sense the 3-D volume of the atmosphere with a resolution of 1-2 km within several minutes up to a range of several hundred kilometres from the radar.

Currently different systems are common:

- Doppler radars
  reflectivity, Doppler velocity,
  spectral width.
- Polarization Doppler radars
  plus:
  information on particles
  (shape, phase, concentration).













#### **Weather Radar**

Weather radar systems use different frequency bands.

- X band (10 GHz, 3 cm) small (1.5 m), short range, mostly for cities or smaller catchments.
- C band (5.4 GHz, 5.5 cm) big (4-5 m), medium range, all weather radars in Central Europe.
- S band (3 GHz, 10 cm) huge (8-10 m), long range, typical in USA and tropics.













## **Applications of weather radar**

### Reflectivity:

- rain fall rate,
- storm structure.

#### Doppler velocity:

- flow information,
- wind field,
- Refractive index estimation (so far only for S-band and klystron transmitter).

#### Polarization parameters:

- improved rain rate estimation,
- estimation of RDSD,
- hydrometeor identification.

















### Not only in rain, but also in "clear-air"

Clear-air scatters in summer up to a range of 50 km, shows convective structures, Scatters are: insects, clouds, Bragg-scatter.

















# **Weather radars in Southern Germany**

DWD: 16 C-band operational Doppler radars in Germany.

- + DWD research radar at Hohenpeißenberg (polarimetric in 2005),
- + operational C-band radar at Karlsruhe,
- + X-band radar at Bonn (50 km range).
- + C-band at Nancy (France) and Albis (Switzerland).
- + C-band polarimetric DLR Radar POLDIRAD.















# **Weather radars in Southern Germany**

DWD: 16 C-band operational Doppler radars in Germany.

- + DWD research radar at Hohenpeißenberg (polarimetric in 2005),
- + operational C-band radar at Karlsruhe,
- + X-band radar at Bonn (50 km range).
- + C-band at Nancy (France) and Albis (Switzerland).
- + C-band polarimetric DLR Radar POLDIRAD. Radar is portable.















### **Multiple Doppler Wind fields**

Doppler velocity only gives radial component of wind field.

Doppler measurements with additional radars (monostatic or bistatic) can give the full 3-dimensional wind field.







Institut für Physik der Atmosphäre







## **Dual Doppler Wind fields**

Dual-Doppler wind fields are possible as long as the vectors from the two radars intersect at an angle within about 40° to 140° (assuming a maximum uncertainty of 2 m/s).





Horizontal wind vector through direct geometric solution.

Vertical air velocity through integration of horizontal divergence / convergence.

Friedrich & Hagen, 2004, Meteorol. Appl., 11, 155-171.









# Multiple Doppler coverage in Southern Germany

Multiple-Doppler with DWD operational radars,

- + other Doppler radars in region,
- + POLDIRAD.

Limitations through large distances between radars. Lowest usable height can be some kilometres above terrain. Vertical air velocity can only be estimated at short baselines (~30km).

Remaining areas can be covered by single Doppler wind field algorithms.













# Multiple Doppler coverage in Southern Germany

Multiple-Doppler with DWD operational radars,

- + other Doppler radars in region,
- + POLDIRAD.

Limitations through large distances between radars. Lowest usable height can be some kilometres above terrain. Vertical air velocity can only be estimated at short baselines (~30km).

Remaining areas can be covered by single Doppler wind field algorithms.

Türkheim – Hohenpeißenberg 2 June 2001 12 UTC.













### **Summary**

Weather radar systems are powerful 4–D observation systems to cover a wide range of atmospheric phenomena (not just rain).

Doppler and polarisation diversity allows for detailed observations of dynamic and microphysical features.





